
www.manaraa.com

A Middleware for Building Context-Aware Mobile
Services

Tao Gu 2,1 , Hung Keng Pung 1 , Da Qing Zhang
2

1 Department of Computer Science, National University of Singapore

2 Connected Home Lab, Institute for Infocomm Research
Singapore

gutao@comp.nus.edu.sg, punghk@comp.nus.edu.sg, daqing@i2r.a-star.edu.sg

Abstract Computing becomes increasingly mobile and pervasive
today; these changes imply that applications and services must be
aware and adapt to highly dynamic environments. Today,
building context-aware mobile services is a complex and time-
consuming task. In this paper, we present a Service-oriented
Context-Aware Middleware (SOCAM) architecture for the
building and rapid prototyping of context-aware mobile services.
We propose an ontology-based approach to model various
contexts. Our context model supports semantic representation,
context reasoning and context knowledge sharing. We take a
service-oriented approach to build our middleware which
supports tasks including acquiring, discovering, interpreting,
accessing various contexts and interoperability between different
context-aware systems.

Keywords –Pervasive Computing; Context-aware Middleware;
Context-aware Mobile Services; Mobile Commerce

1 INTRODUCTION

With the recent advances in mobile computing technology
and the penetration of wireless networks, the nature of the
services is moving towards mobile services that are becoming
accessible from network-enabled mobile devices. Mobile
services are expected to expand significantly in the next few
years in term of popularity, variety and complexity. To avoid
increasing complexity, and allow the users to concentrate on
their tasks, mobile services must be aware of their contexts and
automatically adapt to their changing contexts - known as
context-aware mobile services. By context, we refer to any
information that can be used to characterize the situation of an
entity, where an entity can be a person, place, or physical or
computational object [1]. For example, contexts can be a
person’s current location, the user profile, the current time and
date, or the temperature, etc. Contexts-aware mobile services
can be used in many areas, including:

x presenting context information to mobile users

x triggering actions/behaviors on the occurrence of a set of
contexts

x adapting of presentation of services to mobile users

A number of context-aware systems have been developed
to demonstrate the usefulness of various contexts. However,
context-aware mobile services have never been widely

available to everyday users and developing such systems is still
a complex and time-consuming task. Aiming at providing a
middleware-level support for building and rapid prototyping of
context-aware services, we propose a Service-Oriented
Context-Aware Middleware (SOCAM) architecture.

In the SOCAM architecture, we present a formal context
model based on ontology. Contexts are represented as
predicates written in OWL [2] - an ontology markup language.
The benefit of the ontology-based approach is that context
knowledge can be shared among different entities and
reasoning about context becomes possible.

Our middleware provides supports for most of the tasks
involved in dealing with context - acquiring context from
various sources; interpreting context; and carrying out
dissemination of context. The main feature of the SOCAM
architecture is that it supports context reasoning. Through
context reasoning, high-level, implicit contexts can be derived
from low-level, explicit contexts and applications can be given
a notion of the confidence of different contexts before acting
on it. Each component in SOCAM is designed as an
independent service component which can be advertised,
located and accessed through a Service Locating Service.
Context-aware mobile services can be easily built by using
various types of contexts with different levels of complexity.

The rest of this paper is organized as follows. Section 2
discusses on related work. Section 3 describes our context
model. We present the SOCAM architecture in Section 4 and
its implementation and evaluation in Section 5. Finally, we
conclude in Section 6.

2 RELATED WORK

A number of context-aware systems have been developed
to demonstrate the usefulness of context-aware computing
technology. In the earlier stage of the research, many
researchers focused on building application-specific context-
aware systems such as the Active Badge [3] project which
provided the phone redirection service based on the location of
a person in an office; and the Cyberguide [4] project which
provided a context-aware tour guide to visitors. In MIT’s AIRE
[5] project, an intelligent room equipped with computer vision
and speech recognition systems was created to experiment with
different forms of natural, multimodal human-computer

www.manaraa.com

interaction. The HP’s Cooltown [6] project is a web-based
system for context-awareness. These systems are typically
proprietary and difficult to obtain and process context
information due to the "ad-hoc" approach they deployed. They
may depend on the underlying hardware and operating system.

Some researchers take a Framework-based approach to
provide basic structures and reusable components for common
functionalities to enable easy creation of context-aware
applications. The ParcTab [7] system was the earliest attempt
on general context-aware framework. By using an object-
oriented approach, the ContextToolkit [8] provides a
framework and a number of reusable components to support
rapid prototyping of sensor-based context-aware applications.
However, these systems do not provide a common context
model to enable context knowledge sharing and context
reasoning.

Recent research work has focused on providing
infrastructure support for context-aware systems. The
advantage of the infrastructure-based systems has been pointed
out in [9]. In the Context Fabric [9] infrastructure, Hong et al.
took a database-oriented approach to provide context
abstraction by defining a Context Specification Language; and
a set of core services. However, the design of a proprietary
context specification language may lead to the lack of a
common model. Ranganathan et al. [10] developed a
middleware for context awareness and semantic
interoperability, in which they represented context ontology
written in DAML+OIL [11]. In the CoBrA [12] project, Chen
et al. proposed an agent-oriented infrastructure for context
representation, sharing knowledge and user’s privacy control.
However, they did not provide a performance evaluation for
the feasibility of context reasoning in pervasive computing
environments; and there is no explicit support for mobile
services.

3 AN ONTOLOGY-BASED CONTEXT MODEL

The basic concept of our context model is based on
ontology which provides a vocabulary for representing and
sharing context knowledge in a pervasive computing domain,
including machine-interpretable definitions of basic concepts in
the domain and relations among them. An ontology-based
model for context information allows us to describe contexts
semantically in a way which is independent of programming
language, underlying operating system or middleware; enables
formal analysis of domain knowledge, i.e., context reasoning.

The design of context-aware mobile services often concerns
with the limitation of mobile devices such as low CPU speed
and small memory. To meet such requirement and reduce the
burden of context processing on mobile thin clients, we design
our context ontologies in a two-level hierarchy. We divide a
pervasive computing domain into several sub-domains, e.g.,
home domain, office domain, vehicle domain, etc; and define
individual low-level ontology in each domain. We also define a
generalized ontology which describes the general concepts in
upper level to link up all the low-level context ontologies as
shown in Figure 1. Domain-specific ontologies can be
dynamically "bounded" or "re-bounded" with the upper
ontology when the domain is changed. For example, when a

user leaves his home to drive a car, the home-domain ontology
will be automatically replaced by the vehicle-domain ontology.

� �
��
��

�� �
�

�
	 �
 �
� �

�

�
�

� ��
�
�

� �
�
�

� �
���
� �

� ��
����
�

	 �
 �
� �

�� �
�

Figure 1. The ontology-based model with a two-level hierarchy

The structures and properties of different contexts are
described in an ontology which may include descriptions of
classes, properties and their instances. The ontology is written
in OWL as a collection of RDF triples, each statement being in
the form (subName, predicate, objName), where subName and
objName are ontology’s objects or individuals, and predicate is
a property relation defined by the ontology. Some other issues
related to context modeling, i.e., classification, can be found in
our paper [13].

4 THE SOCAM ARCHITECTURE

Based on our context model, we design a Service-Oriented
Context-Aware Middleware (SOCAM) architecture which
aims to enable rapid prototyping of context-aware services in
pervasive computing environments. The middleware converts
various physical spaces where contexts are acquired from into
a semantic space where contexts can be easily shared and
accessed by context-aware services. It consists of Context
Providers, Context Interpreter, Context Database, Service
Location Service and Context-aware Mobile Services as shown
in Figure 2.

Figure 2. Overview of the SOCAM architecture

www.manaraa.com

4.1 Context Providers
Context Providers provide context abstraction to separate

the low-level context sensing from the high-level context
manipulation. Each context provider needs to be registered into
a service registry by using the Service Locating Service
mechanism and can be discovered by others.

External context providers obtain contexts from external
sources, e.g., a weather information server which is able to
provide weather information on a particular place, or a road
traffic provider which provides traffic information on a
particular area. Internal context providers acquire contexts
directly from ubiquitous sensors located in a sub-domain, i.e., a
vehicle environment. For example, a location provider can
provide the location of a vehicle acquired from an in-vehicle
GPS receiver.

Different context providers acquire various context data
from internal physical sensors or external virtual sensors and
represent them as context events in the form of OWL
descriptions. For example, a high-level description of context
event "My car is approaching a supermarket" may be produced
by a GPS location provider in the OWL description as shown
below:

<socam:Car rdf:about="MyCar">

 <socam:hasNearbyPlace rdf:resource="#Supermarket"/>

</socam:Car>

4.2 Context Interpreter
The Context Interpreter also acts as a context provider as it

provides high-level contexts by interpreting low-level contexts.
It consists of a context reasoner and a context KB.

The context reasoner has the functionality of providing
deduced contexts based on direct contexts, resolving context
conflicts and maintaining the consistency of the context KB.
Multiple logic reasoners can be incorporated into the Context
Interpreter to support various kinds of reasoning tasks.
Currently we have RDFS reasoner, OWL reasoner and a
general rule-based reasoner built-in to our architecture.
Different inference rules can be specified and preloaded into
various logic reasoners. Developers can easily create their own
rules based on predefined format.

The Context KB provides a set of API’s for other service
components to query, add, delete or modify context
knowledge. The Context KB contains: context ontologies in a
sub-domain and their instances. These instances may be
specified by users in case of defined contexts or acquired from
various context providers in case of sensed contexts. The
context ontologies and their instances of defined contexts are
pre-loaded into the Context KB during system initiation; the
instances of sensed contexts are loaded during runtime. To
ensure freshness of context information, we deploy an event
triggering mechanism to allow updating of a particular context
ontology or instance. Different information requires different
update frequency. For example, the instance of a defined

context may require updating every month or year, whereas the
instance of a sensed context may need to be updated more
frequently due to dynamic nature of the sensed data.

4.3 Service Locating Service
The Service Locating Service allows user, agents and

applications to locate different context providers. We have
developed the Service Locating Service mechanism in [14].
The main feathers include scalability, dynamics and multiple
matching.

It supports wide-area discovery as a context provider, e.g, a
weather service provider may be physically located in external
networks. An internal context provider may change a context
by adding and removing physical sensors or by reconfiguring a
set of contexts supported. The service Locating Service is able
to track and adapt to the dynamic changes of context providers.
It also deploys a multiple matching mechanism to allow
context providers to advertise their supporting contexts in
different forms. Context providers can either use a service
template or use OWL expressions to specify the kinds of
contexts they provide. An application wishes to find out a
context, for example the location context of "MyCar", will
send the query "socam:locatedIn(MyCar ?x)" to the Service
Locating Service. The Service Locating Service will load the
context ontologies stored in the database and context instances
advertised by different context providers, and apply semantic
matching to find out which context provider provide this
context. If a match is found, the reference to the context
provider will returns to the application.

4.4 Context-aware Mobile Services
Context-aware mobile services are applications and

services that make use of different level of contexts and adapt
the way they behave according to the current contexts. By
querying the service registry provided by the Service Locating
Service, we are able to locate all the context providers which
provide a set of interested contexts. To obtain contexts, a
context-aware service can either query a context provider or
listen for events sent by context providers.

TABLE I. FOL RULES FOR DESCRIBING CONTEXT-AWARE
BEHAVIORS

Context-
aware mobile
services in a
smart phone

IF socam:locatedIn(John,socam:MyCar)
� socam:status(John,DRIVING)

THEN forward incoming calls to the in-vehicle
phone or voice mail

Location-
based
reminder
services

IF socam:locatedIn(John,socam:MyCar)�
socam:hasNearbyPlace(MyCar, SupermarketA)
� socam:hasActivity(MyCalendar, Supermarket)

THEN notify me(John) to buy something

Vehicle safety
services

IF socam:locatedIn(John,socam:MyCar)
� socam:status(SeatBelt,LOOSE)

THEN alert me(John)

www.manaraa.com

To construct context-aware mobile services, a common
way is to specify actions that are triggered by a set of rules
whenever the current context changes. In the SOCAM, service
developers can easily write pre-defined rules and specify what
methods to be invoked when a condition becomes true. All the
rules will be saved in a file and pre-loaded into the Context
Reasoner. Developers also can make changes on the rule file
and load it during runtime. Table 1 shows some context-aware
behaviors which specified by a set of FOL rules.

4.5 Interaction Between Components
The SOCAM middleware components are designed as

independent service components which may be distributed over
heterogeneous networks and can interact with each other.

A context provider which provides a set of contexts may
acquire context data from heterogeneous sensors. Different
context providers resided in an internal network or an external
network register and advertise their services through the
Service Locating Service. Context consumers, i.e., the context
interpreter or context-aware mobile services, are able to locate
a context provider and obtain a piece of context. The context
interpreter and context-aware mobile services can also register
themselves to the Service Locating Service or other service
discovery mechanisms so that they can be discovered and
accessed by other context-aware systems.

In the SOCAM architecture, context dissemination is done
in both push and pull modes. We provide a set of procedures
and APIs to support both context query and context event
subscription mechanisms. Users or services can either issue a
query for a particular piece of context or subscribe a context
event to a context provider. When the event is triggered, the
particular context in the form of OWL descriptions will be
return to the subscriber.

5 IMPLEMENTATION AND EVALUATION

Our prototype system consists of an OSGi-compliant
mobile service gateway, various computing devices and
physical sensors in an intelligent vehicle environment.

We incorporate the SOCAM middleware into the OSGi
(Open Service Gateway Initiative) service platform [15] to
provide secure and reliable service delivery, and remote
management of context-aware mobile services. The OSGi-
compliant mobile service gateway is a Java embedded server
that connects local networks, i.e., in-vehicle network, to wide-
area networks. The gateway enables and manages
communications to and from local networks. Various types of
networked devices such as in-vehicle computers, mobile
devices, and in-vehicle sensors are attached to the gateway via
Ethernet, WLAN, Bluetoth, etc. The SOCAM middleware is
built on top of the OSGi service platform to provide a
middleware level support for context-aware systems.

The gateway is designed based on Intel Celeron 600M CPU
and 256M memory and runs Linux 2.4.17 kernel. The Context
Interpreter runs on the gateway and is implemented based on
HP’s semantic web toolkit - Jena2 [16].

We measured the performance for the reasoning process
and service locating process and the experimental results are
presented in this section.

In our implementation, the vehicle-domain ontologies
consists of 19 classes and 30 properties. Context instances are
provided by internal context providers. The Context Interpreter
validates and parses these OWL expressions into RDF triples
[17] and performs the reasoning process when a context query
is received. On average, it takes about 0.5 seconds to load and
merge different OWL files containing context ontologies and
different types of context instances. The average runtime for
the reasoning process is about 1 seconds and the memory
consumption is about 6MB.

The result shows that the runtime is acceptable for running
context-aware mobile services. It also demonstrate that the
Context Interpreter has a reasonable performance to perform
reasoning over a small-scale (i.e., 5000 triples) context
knowledge in pervasive computing environments. By tailoring
the upper context ontology and domain-specific ontologies in
our context model, the total number of context
classes/instances used in a sub-domain can be controlled within
the limits. By decoupling context consuming and reasoning
process, we are able to execute context-aware mobile services
on resource-constraint devices and leave the computational-
intensive reasoning tasks to resource-rich devices such as an
OSGi mobile service gateway.

We also measured the system searching performance for
the Service Locating Service. We created and registered
various context providers, the interpreter and mobile services,
multiple mobile clients emulated using Pentium laptop with
wireless LAN connectivity on separate machines made
concurrent requests to a server. We measured the average
elapse time taken for different number of concurrent requests.
The average elapse time for each search request is around 250
ms and is nearly proportional to number of concurrent requests.
More detailed performance results can be found in [14].

6 CONCLUSION AND FUTURE WORK

In this paper, we present a service-oriented middleware
architecture to enable the rapid prototyping of context-aware
mobile services in an intelligent vehicle environment. The
SOCAM architecture which is based on our formal context
model provides efficient supports for context acquisition,
context discovery and context dissemination. Our experimental
results demonstrate reasonable performance for context
reasoning and searching; and the SOCAM middleware is
capable to meet the requirements of context-aware systems
concerning limited memory and CPU resources. We will
continue to build our prototype system to realize the SOCAM
architecture in an intelligent vehicle environment and we will
work on some of issues including service adaptation with
regards to changing contexts.

REFERENCES
[1] Dey, A. and Abowd, G., "Towards a Better

Understanding of Context and Context-Awareness",

www.manaraa.com

Workshop on the what, who, where, when and how of
context-awareness at CHI 2000, April 2000.

[2] M.Smith, C. Welty, and D. McGuinness, "Web Ontology
Lanugauge (OWL) Giude", August 2003.

[3] Roy Want, Andy Hopper, Veronica Falcao, Jonathon
Gibbons, "The Active Badge Location System", ACM
Transactions on Information Systems, Vol. 10, No. 1, pp
91-102, January 1992.

[4] Sue Long, Rob Kooper, Gregory D. Abowd, and
Christopher G. Atkeson, "Rapid Prototyping of Mobile
Context-Aware Applications: The Cyberguide Case
Study", Proceedings of the 2nd ACM International
Conference on Mobile Computing and Networking
(MobiCom’96), November 1996.

[5] http://www.ai.mit.edu/projects/aire/projects.shtml#835.
[6] T. Kindberg and J. Barton, "A Web-based Nomadic

Computing System", Computer Networks (Amsterdam,
Netherlands: 1999), 35(4):443–456, 2001.

[7] Shilit, B.N., "A Context-Aware System Architecture for
Mobile Distributed Computing," Ph.D. thesis, Dept of
Computer Science, Columbia University, 1995.

[8] Dey, A.K., Salber, D. Abowd, G.D., "A Conceptual
Framework and a Toolkit for Supporting the Rapid
Prototyping of Context-Aware Applications", Anchor
article of a special issue on Context-Aware Computing,
Human-Computer Interaction (HCI) Journal, Vol. 16(2-
4), pp. 97-166, 2001.

[9] Jason I. Hong and James A. Landay, "An Infrastructure
Approach to Context-Aware Computing", In Human-
Computer Interaction , Vol. 16, 2001.

[10] Anand Ranganathan and Roy H. Campbell, "A
Middleware for Context-Aware Agents in Ubiquitous
Computing Environments", In ACM/IFIP/USENIX
International Middleware Conference, Rio de Janeiro,
Brazil, June 2003.

[11] Ian Horrocks, "DAML+OIL: a Reason-able Web
Ontology Language", In Proceedings of the 8th
International Conference on Extending Database
Technology (EDBT), Prague, March 2002.

[12] Harry Chen and Tim Finin, "An Ontology for a Context
Aware Pervasive Computing Environment", IJCAI
workshop on ontologies and distributed systems,
Acapulco MX, August 2003.

[13] Tao Gu, Xiao Hang Wang, Hung Keng Pung, Da Qing
Zhang, "An Ontology-based Context Model in Intelligent
Environments", In Proceedings of Communication
Networks and Distributed Systems Modeling and
Simulation Conference, San Diego, California, USA,
January 2004.

[14] Tao Gu, H. C. Qian, J. K. Yao, H. K. Pung, "An
Architecture for Flexible Service Discovery in
OCTOPUS", Proc. of the 12th International Conference
on Computer Communications and Networks (ICCCN),
Dallas, Texas, October 2003.

[15] The Open Services Gateway Initiative (OSGi),
www.osgi.org.

[16] Jena 2 - A Semantic Web Framework,
http://www.hpl.hp.com/semweb/jena2.htm

[17] Dan Brickley, R.V. Guha, "RDF Vocabulary Description
Language 1.0: RDF Schema", World Wide Web
Consortium, January 2003.

